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Exploring Fluorescence Spectra of Apple Juice and Their
Connection to Quality Parameters by Chemometrics
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Fluorescence spectra of apple juice were recorded with a view to evaluating the information content
in relation to picking date of the apples and possible correlation to traditional harvest indices. The
data analysis was performed by using chemometric methods (PCA, PLS, SIMCA). It was shown
that the fluorescence spectra correlated with the content of soluble solids in the apple juice and the
two apple varieties could be correctly classified by their spectra.
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INTRODUCTION

Methods for determining the optimum harvest time
for apples have been a research subject for many years.
For a review, see Kingston (1993). Most of the methods
are based on measurements of titratable acidity, soluble
solids, starch content, internal ethylene concentrations,
or textural properties. Much of the work done has
focused on obtaining a set of practical guidelines re-
garding the conditions for optimum yield with respect
to the expected storage life of the apples involved (Streif,
1983; Herregods and Goffings, 1993). However, it is
often concluded that the available methods are either
limited in scope or unable to explain the variance found
in overall quality (Douglas, 1983). Among the many
factors known to influence apple maturity and hence
harvest time are climate, nutrition of the trees, time
from anthesis, position of the apple on the tree (effects
of neighbors, light/shade, upper/lower branch), and
variety. All this seems to indicate that a generalized
model for estimating optimum picking time must be
based on a very large set of measurements to account
for all of these effects. This leads to costly and unwieldy
methods that are unlikely to lead to a practical analysis.
To counter this situation, one needs a set of screening
analyses that can be calibrated to conventional data by
multivariate analysis, thereby exploring hitherto un-
known correlations which may be exploited for control
of picking time and the chemical parameters related to
quality and variety. An example of a successful ap-
plication of this strategy is seen in the widespread use
of near-infrared reflectance (NIR) and near-infrared
transmittance (NIT) spectroscopy in the food industry
(Williams and Norris, 1987). Fluorescence spectroscopy
is another method yielding multivariate data with
special advantages because of its high degree of specific-
ity and sensitivity. Methods for handling the large
number of variables found in data such as fluorescence
spectra are now being made available through the
evolving discipline of explorative data analysis/chemo-
metrics. In this paper we report on the correlation
between fluorescence spectra of apple juice and fruit
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quality parameters as determined through the use of
multivariate statistical methods.

MATERIALS AND METHODS

Apples (Malus domesticus L. cv. Jonagold and Elstar) were
grown at the University’s experimental orchard at Hgje
Tastrup. For each variety, 60 apples were picked at random
from three trees growing in the same row. Picking was done
on the morning of the day of analysis on 7 different days
throughout the harvest period: the 23rd and 29th of Septem-
ber and the 4th, 7th, 11th, 14th, and 18th of October.

At the laboratory 20 apples were cut into pieces and juiced
one by one in a manual household juicer (Vitamina, Westmark,
Germany). Ten milliliters of the juice of each apple was
pasteurized by immersing a test tube holding the juice in a
95 °C water bath for 2 min, resulting in a temperature of 90
°C in the tube. The pasteurized juice was stored at —28 °C
for less than 2 months prior to recording of the fluorescence
spectrum. An aliquot of unpasteurized juice was used for
measurement of soluble solids and titrable acids. Soluble
solids were measured on a refractometer (RFM 330, Belling-
ham & Stanley Ltd., England). All measurements were done
in duplicate. Titrable acids were determined by titration of
the juice with 0.1 N NaOH to an endpoint at pH 8.1 on a
Mettler DL 21 titrator.

Fluorescence emission spectra were recorded on a Perkin-
Elmer LS 50B luminescence spectrometer. Samples were
prepared by filtering the pasteurized juice through glass wool,
and the filtrate was diluted 1:10. Each sample was scanned
at two excitation wavelengths, 315 (A) and 265 (B) nm, with
the highest excitation wavelength first to minimize photode-
composition of the sample. Emission values were recorded in
the interval 275—560 nm in 0.5 nm increments. The slit width
was 10 nm for both monochromators.

A short qualitative description of the multivariate analytic
methods used will be given in the following. For a more
detailed description, the reader is referred to the literature
(Martens and Naes, 1989; Thomas, 1994). Principal component
analysis (PCA) is used for exploring the correlated variations
in many variables simultaneously. This decomposition tech-
nique replaces the original (many) variables with a lower
number of latent variables or principal components. The
principal components are constructed so that they essentially
describe the same variation as the original variables but in a
more condensed way. For example, instead of hundreds of
variables as in the case of spectroscopic data, one can visualize
and explore two to five latent variables. As only the essential
information is kept and noise is reduced, the interpretation
and numerical stability are much better than when using the
original data. For the classification of apple varieties, a PCA
model is estimated for each class. The PCA model defines the
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Figure 1. Soluble solids (open symbols) and titrable acid (solid
symbols) in apple juice at different picking days. Soluble solids
is given as percent sucrose. Titrable acid is given as malic acid
equivalents. The measurements are means of 20 samples
(apples) per day, with +1 SD indicated and a regression line
fitted to the data. The slopes of the regression lines are shown
in the insets. The asterisks denote the significance level for
the hypothesis that the lines are nonhorizontal.
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Figure 2. Emission spectra of apple juice at the two excitation
wavelengths used. The spectra shown are from Jonagold
sample 11 picked on Oct 4, 1994.

location and dispersion of the given class. These PCA models
can be used to classify new samples. This is called a SIMCA
classification (soft independent modeling of class analogy)
(Frank and Lanteri, 1989; Wold et al., 1983). To predict to
which class a new sample belongs, the distance of the sample
to the different models is calculated, and the model that is
closest to the sample constitutes the most likely class. Partial
least-squares regression (PLS) is used for regression analysis.
This method has several advantageous features. As PCA, PLS
also handles correlated variables by decomposing the original
variables into a set of orthogonal latent variables, thereby also
reducing the noise. The PLS model also gives information as
to whether the calibration samples are homogeneous or if
outliers are present which reduce the quality of the model. A
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Figure 3. Loading plot of the first two loading vectors from
a PCA on the complete fluorescence data set. As the emission
spectrum is measured at two different excitation wavelengths,
each sample is characterized by two emission spectra. In the
PCA analysis these are treated simultaneously as one “spec-
trum” by concatenating the two spectra. For interpretation
purposes the two loading vectors from the two-component PCA
model are split into the first part corresponding to excitation
at 315 nm (topmost) and the second part corresponding to
excitation at 265 nm (bottom). The first loading vector, for
example, is the two solid line curves concatenated into one
curve.

very important aspect of PLS and other multivariate tech-
niques is that interferences in the samples need not be
eliminated, as long as they are also present in the calibration
samples.

The multivariate statistical analyses were performed using
the software package Unscrambler (Camo A/S, Norway).
Variance analysis and trend line estimation were done using
SAS 6.10 (SAS Institute Inc., Cary, NC).

RESULTS

Traditional Harvest Indices. The increase in
soluble solids and decrease in titratable acidity during
the harvest period are shown in Figure 1. For titratable
acidity a significant change during the picking period
could be observed only for Elstar. Significant changes
in the soluble solids fraction occurred throughout the
picking period for Elstar as well as for Jonagold.
However, the large intraday variation led to difficulties
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Figure 4. Prediction of soluble solids from fluorescence data. The measured value for soluble solids (in percent sucrose) is plotted
against the value predicted by the PLS model based on the fluorescence spectra. Statistics for the model fit and the number of
latent variables used in the models are shown above the plots. RMSECYV, root mean square error of cross-validation; CORR,
correlation between predicted and measured values; SLOPE, slope of regression line; PC, number of latent variables utilized in

the model.

in discriminating between the individual days, as can
be seen in Figure 1. It was not possible to discern
between the varieties on the basis of the soluble solids
or titratable acidity data.

Fluorescence Spectra. On the basis of preliminary
experiments, apple juice was found to exhibit a fair
amount of fluorescence (Figure 2). Excitation wave-
lengths of 315 and 265 nm were chosen, as they yielded
the richest spectra. The obtained spectra were analyzed
by PCA after removal of the parts dominated by Ray-
leigh scattering effects, using the method described by
Noergaard (1995). From the loading plot of the two first
principal components (Figure 3) the wavelengths re-
sponsible for the main variation in the data can be found
as the maxima. On the first loading vector the areas
around (ex/em) 315/440 nm and 265/350 nm have the
highest loadings, while for the second loading vector the
area from 330 to 370 nm (ex 265 nm) has high loadings.
The loading vectors are mathematical constructs but
related to the underlying phenomena (spectra). The
areas of high loadings indicate areas where the pure
spectra of the analytes producing the fluorescence may
have peaks. The bump on the second loading vector is
an indication that there are actually two main contribu-
tors to the measured fluorescence spectra and that their
spectra are highly overlapping.

Correlation to Known Harvest Indices. PLS was
used to attempt to develop models between the most
significant spectral principal components and soluble
solids, titratable acidity, time of picking, and variety.
The fluorescence spectra were found to exhibit a positive
correlation with soluble solids in both varieties. For
each variety a PLS model using mean centered fluores-
cence spectra as independent variables and soluble
solids as dependent variable gave rise to five and six
component models, respectively (Figure 4). These mod-
els were found by using a four-segmented cross-
validated procedure, as a full cross-validation overes-
timates the predictive power of the model when there
are many samples in the calibration set (Esbensen et
al., 1994). Two samples from the Elstar extracts and
one sample from the Jonagold extracts were eliminated

0,1
+ Elstar
0,08 | o Jonagold
0,06
0,04 *
] +H o+
+; +
0,02 00 a4
~ f‘_t i+ +
g 09 o sk e A
0,02 s S
e #0544
Tt
0,04 T
-0,06
]
-0,08{
-0,1

LA T T T T T
-0,1 -0|,08 -OI,OG -0,04-0,02 0 0,02 0,04 0,06 0,08 0,1
PC1
Figure 5. Score plot of the score values of the first two

principal components obtained in a PCA on fluorescence data
of both varieties.

from the data set in addition to four erroneous samples.
This exclusion was not essential for the result; however,
there were strong indications that some error was
present in their soluble solids values. As the correlation
between soluble solids and fluorescence was observed
independently in both varieties, it was tested whether
any distinction could be made between the two varieties
on the basis of fluorescence alone. By developing a
SIMCA model on half of the samples, it was possible to
correctly classify the remaining half of the samples as
either Jonagold or Elstar. In Figure 5 a score plot of
the fluorescence spectra shows the separation of the two
varieties into two distinct clusters. The variation seen
in the fluorescence spectra was found to correlate poorly
to the amount of titrable acids in the juice, and no model
could be established here. Models derived from the
fluorescence spectra were not able to predict the day of
picking throughout the harvest period. When supple-
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mented with the data for soluble solids and titratable
acidity, it was only possible to establish separate models
for picking days 1, 2, and 7 for Jonagold.

DISCUSSION

An important use of fluorescence information in
relation to fruit maturation is seen in the measurement
of delayed light in connection to chlorophyll fluorescence
(Forbus and Dull, 1991; Gunasekaran et al., 1990).
However, attractive as they are, these methods are not
likely to find use in fruits with large color variations in
the peel, such as apple. Reports on the study of emis-
sion spectra from fruits, fruit juices or extracts of fruit
in relation to fruit maturity are scarce. Most concen-
trate on the attempts to find aging-induced pigments,
lipofuscins, in apples (Knee, 1982), avocado (Meir et al.,
1991), and bananas (Maguire and Haard, 1976). These
studies use a single emission wavelength band in an
attempt to distinguish a particular fluorophor. How-
ever, Sheehy and Roberts (1991) pointed out that
inconsistencies in many lipofuscin studies regarding the
emission wavelengths detected raise questions as to the
origin of these signals. In this study we have not a
priori established a specific analyte for which to analyze
but instead employed multivariate statistics in an effort
to uncover potential signs of correlation between apple
fluorophore appearance and the maturation processes
occurring in apples during the harvest season.

There are many inherent advantages to using mul-
tivariate techniques: (i) All variables can be used simul-
taneously, so that model selection does not have to be
based on preconceived ideas about the data. (ii) A larger
number of samples than variables is not necessary, as
is the case in traditional statistical methods. (iii)
Interference can be incorporated into the mathematical
model, possibly avoiding tedious and time-consuming
unit operations for cleaning up samples. (iv) Samples
not appropriate for the model can automatically be
detected as outliers (Beebe and Kowalski, 1987).

It is interesting to note that the fluorescence data
enable the distinction between the varieties which could
not be shown from the soluble solids or titratable acidity
data alone. The soluble solids of apple juice are known
to consist mainly of sugars, which in themselves do not
exhibit fluorescence. However, it appears that the
ripening process involves an increase in soluble, fluo-
rescent compounds. Many of the naturally occurring
compounds in apples exhibit fluorescence, e.g. tryp-
tophan, phenolics, and nucleic acids. This makes it
difficult to pinpoint the source of fluorescence without
further analysis of the spectra, but the wavelength pair
observed (315/440 nm) corresponds well to chlorogenic
acid (320/430 nm) (Knee, 1982).

The observed correlation of fluorescence spectra with
the increase in soluble solids indicates a possibility of
modeling the progression in maturity with information
obtained from the spectra. The inability to model the
day of picking based on the obtained data is assumed
to be partly due to the problem of high variability in
apples picked on the same day for all variables studied.
A model based on a broader set of parameters may be
successful in accounting for all of the sources of sys-
tematic variation. The fluorescence spectra were found
to yield valuable information but could not help to
overcome the problem of large interapple variation.

ABBREVIATIONS USED

NIR, near-infrared reflectance spectroscopy. NIT,
near-infrared transmittance spectroscopy; PLS, partial
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least squares regression; PCA; principal component
analysis; SIMCA, soft independent modeling of class
analogy.
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